DefExt: A Semi Supervised Definition Extraction Tool

نویسندگان

  • Luis Espinosa Anke
  • Roberto Carlini
  • Horacio Saggion
  • Francesco Ronzano
چکیده

We present DEFEXT, an easy to use semi supervised Definition Extraction Tool. DEFEXT is designed to extract from a target corpus those textual fragments where a term is explicitly mentioned together with its core features, i.e. its definition. It works on the back of a Conditional Random Fields based sequential labeling algorithm and a bootstrapping approach. Bootstrapping enables the model to gradually become more aware of the idiosyncrasies of the target corpus. In this paper we describe the main components of the toolkit as well as experimental results stemming from both automatic and manual evaluation. We release DEFEXT as open source along with the necessary files to run it in any Unix machine. We also provide access to training and test data for immediate use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Image Classification Based on Semi-Supervised Rotation Forest

Ensemble learning is widely used to combine varieties of weak learners in order to generate a relatively stronger learner by reducing either the bias or the variance of the individual learners. Rotation forest (RoF), combining feature extraction and classifier ensembles, has been successfully applied to hyperspectral (HS) image classification by promoting the diversity of base classifiers since...

متن کامل

Semi-supervised Relation Extraction with Label Propagation

To overcome the problem of not having enough manually labeled relation instances for supervised relation extraction methods, in this paper we propose a label propagation (LP) based semi-supervised learning algorithm for relation extraction task to learn from both labeled and unlabeled data. Evaluation on the ACE corpus showed when only a few labeled examples are available, our LP based relation...

متن کامل

Semi-supervised Relation Extraction with Large-scale Word Clustering

We present a simple semi-supervised relation extraction system with large-scale word clustering. We focus on systematically exploring the effectiveness of different cluster-based features. We also propose several statistical methods for selecting clusters at an appropriate level of granularity. When training on different sizes of data, our semi-supervised approach consistently outperformed a st...

متن کامل

A Review of Relation Extraction

Many applications in information extraction, natural language understanding, information retrieval require an understanding of the semantic relations between entities. We present a comprehensive review of various aspects of the entity relation extraction task. Some of the most important supervised and semi-supervised classification approaches to the relation extraction task are covered in suffi...

متن کامل

Improving Semi-Supervised Acquisition Of Relation Extraction Patterns

This paper presents a novel approach to the semi-supervised learning of Information Extraction patterns. The method makes use of more complex patterns than previous approaches and determines their similarity using a measure inspired by recent work using kernel methods (Culotta and Sorensen, 2004). Experiments show that the proposed similarity measure outperforms a previously reported measure ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.02514  شماره 

صفحات  -

تاریخ انتشار 2016