DefExt: A Semi Supervised Definition Extraction Tool
نویسندگان
چکیده
We present DEFEXT, an easy to use semi supervised Definition Extraction Tool. DEFEXT is designed to extract from a target corpus those textual fragments where a term is explicitly mentioned together with its core features, i.e. its definition. It works on the back of a Conditional Random Fields based sequential labeling algorithm and a bootstrapping approach. Bootstrapping enables the model to gradually become more aware of the idiosyncrasies of the target corpus. In this paper we describe the main components of the toolkit as well as experimental results stemming from both automatic and manual evaluation. We release DEFEXT as open source along with the necessary files to run it in any Unix machine. We also provide access to training and test data for immediate use.
منابع مشابه
Hyperspectral Image Classification Based on Semi-Supervised Rotation Forest
Ensemble learning is widely used to combine varieties of weak learners in order to generate a relatively stronger learner by reducing either the bias or the variance of the individual learners. Rotation forest (RoF), combining feature extraction and classifier ensembles, has been successfully applied to hyperspectral (HS) image classification by promoting the diversity of base classifiers since...
متن کاملSemi-supervised Relation Extraction with Label Propagation
To overcome the problem of not having enough manually labeled relation instances for supervised relation extraction methods, in this paper we propose a label propagation (LP) based semi-supervised learning algorithm for relation extraction task to learn from both labeled and unlabeled data. Evaluation on the ACE corpus showed when only a few labeled examples are available, our LP based relation...
متن کاملSemi-supervised Relation Extraction with Large-scale Word Clustering
We present a simple semi-supervised relation extraction system with large-scale word clustering. We focus on systematically exploring the effectiveness of different cluster-based features. We also propose several statistical methods for selecting clusters at an appropriate level of granularity. When training on different sizes of data, our semi-supervised approach consistently outperformed a st...
متن کاملA Review of Relation Extraction
Many applications in information extraction, natural language understanding, information retrieval require an understanding of the semantic relations between entities. We present a comprehensive review of various aspects of the entity relation extraction task. Some of the most important supervised and semi-supervised classification approaches to the relation extraction task are covered in suffi...
متن کاملImproving Semi-Supervised Acquisition Of Relation Extraction Patterns
This paper presents a novel approach to the semi-supervised learning of Information Extraction patterns. The method makes use of more complex patterns than previous approaches and determines their similarity using a measure inspired by recent work using kernel methods (Culotta and Sorensen, 2004). Experiments show that the proposed similarity measure outperforms a previously reported measure ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1606.02514 شماره
صفحات -
تاریخ انتشار 2016